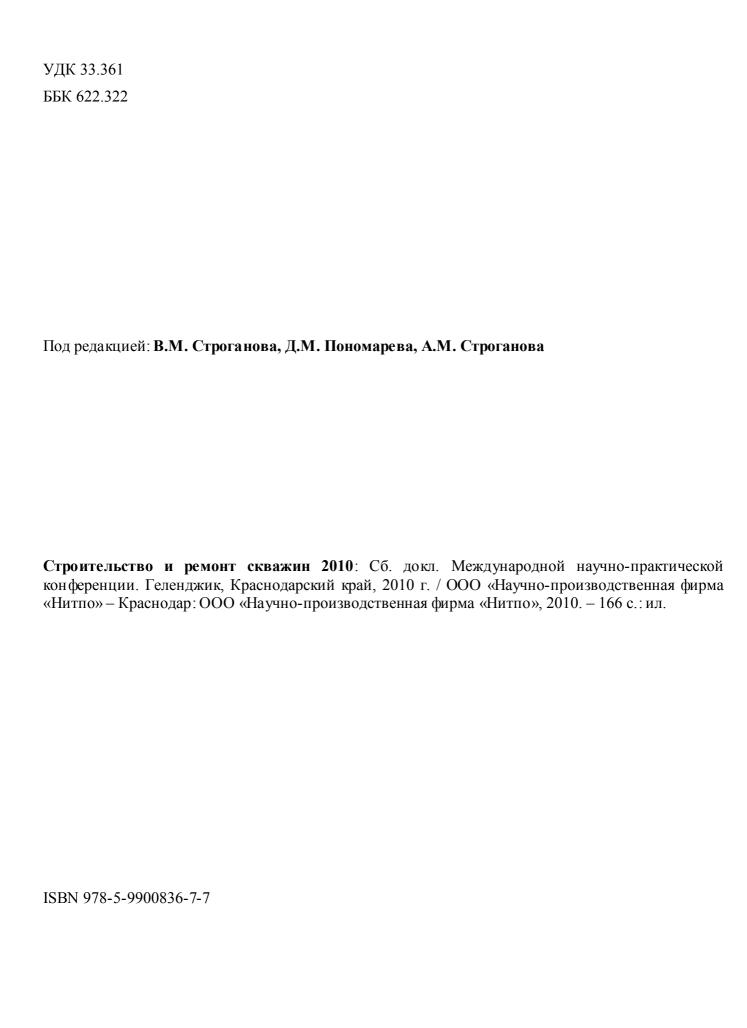


Строительство и ремонт скважин 2010

Сборник докладов Международной научно-практической конференции Геленджик, Краснодарский край 27 сентября - 2 октября 2010 г.

Краснодар 2010

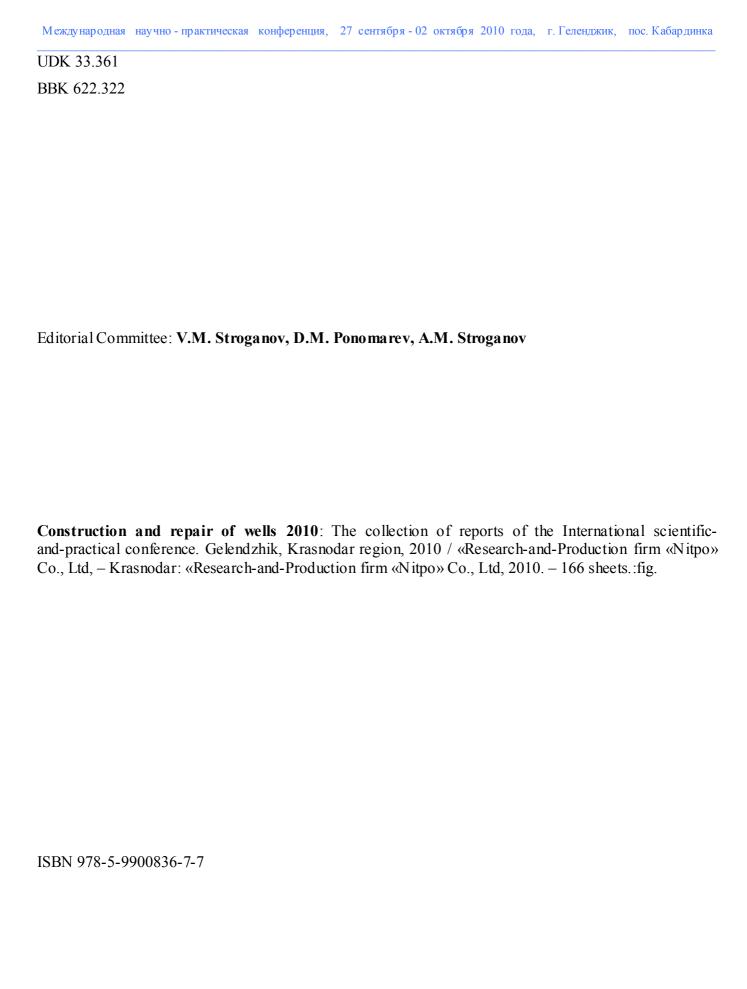


ООО «Научно-производственная фирма «Нитпо»

СТРОИТЕЛЬСТВО И РЕМОНТ СКВАЖИН 2010

Сборник докладов Международной научно-практической конференции Геленджик, Краснодарский край 27 сентября — 02 октября 2010 г.

> Краснодар 2010



«Research-and-Production firm «Nitpo» Co., Ltd

CONSTRUCTION AND REPAIR OF WELLS 2010

The collection of reports of the International scientific-and-practical conference Gelendzhik, Krasnodar region 27^{th} September -2^{nd} October 2010

Krasnodar 2010

Международная научно-практическая конференция

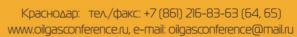
СТРОИТЕЛЬСТВО И РЕМОНТ СКВАЖИН 2010

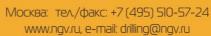
СПОНСОР

ТЕХНОЛОГИЧНЫЙ СПОНСОР

СПОНСОР КОФЕ-БРЕЙКОВ

ИНФОРМАЦИОННЫЕ СПОНСОРЫ:





ЧЕРНОМОРСКИЕ НЕФТЕГАЗОВЫЕ КОНФЕРЕНЦИИOIL & GAS BLACK SEA CONFERENCES

International scientific-and-practical conference

27 September – 2 October 2010 Gelendzhik, Krasnodar region

CONSTRUCTION AND REPAIR OF WELLS 2010

SPONSOR

TECH SPONSOR

SPONSOR OF COFFE BREAKS

INFORMATION SPONSORS:

Organizing Committee:

Krasnodar: tel./fax: +7 (861) 216-83-63 (64, 65) www.oilgasconference.ru, e-mail: oilgasconference@mail.ru

Moscow: tel./fax: +7 (495) 510-57-24 www.ngv.ru, e-mail: drilling@ngv.ru

Содержание	Стр.
Список компаний-участников	9
Российские системы верхнего привода Фишков Л.А. (ЗАО «ПромТехИнвест»)	10
Метод проектирования рациональных S-образных профилей наклонно-направленных скважин	17
Охотников А.Б. (ГК «Интегра», ООО «Смит Продакшн Технолоджи») Современные конструкции буровых долот ОАО «ВОЛГАБУРМАШ» и их эффективное использование	21
Некрасов И.Н. (ОАО «ВОЛГАБУРМАШ») Увеличение механической скорости при ЗБС путем оптимального подбора долот РDС	
в компоновке с ВЗД Соловаткин С.А. (ООО «НК «Роснефть-НТЦ») Мезин И.А. (ООО «РН-Юганскнефтегаз»)	24
Биополимерные буровые растворы серии «HBN 2010» для разведочного бурения Мойса Н.Ю., Мойса Ю.Н (ООО «НПО «Химбурнефть») Филиппов Е.Ф. (ЧУ ВПО «Академия ИМСИТ»	27
Химические реагенты ГК «Миррико» для бурения. Поставка эффекта Ютяев М.А. (ООО «Промышленная химия» ГК «Миррико»)	35
Ликвидация осложнения в процессе бурения скважины № 1 Крупская Бабаян Э.В.	40
Комплексная технология предотвращения осложнений при бурении и ГИС в неустойчивых разрезах горных пород Филиппов Е.Ф. (ЧУ ВПО «Академия ИМСИТ») Мойса Ю.Н. (ООО «НПО «Химбурнефть»)	45
Способ увеличения КПД при турбинном бурении Кузнецов Н.П., Музипов Х.Н. (ООО «Тюменский нефтяной научный центр») Савиных Ю.А., Хмара Г.А. (ГОУ ВПО «ТюмГНГУ»)	50
Способы оперативной оценки успешности построенных скважин Нуриев И.А. (ОАО «Татнефть»)	54
Совершенствование технологии вскрытия продуктивного пласта Бармин А.В. (ООО «Сервис буровых растворов» ГК «Миррико»)	63
Расчет понтона и всплытия опорного блока при различных глубинах моря для освоения нефтегазовых месторождений Асланов Л.Ф. (НИПИ «Нефтегаз» SOCAR)	67
Крепление вторых стволов оснасткой ЗАО ОКБ «Зенит». Практика применения и совершенствование конструкции Зименков С.В., Малиновкин В.И. (ООО «Мегион-Сервис») Кузякин Р.И. (ООО «РИК-Сервис»)	72
Техника и технология НПП "СибБурМаш" для крепления боковых стволов скважин с целью повышения качества разобщения пластов Витязев Д.О., Секисов А.В., Хайруллин Б.Ю. (ЗАО «НПП «СибБурМаш»)	79
Эксплуатация нефтегазовых скважин с межколонным давлением Пустовой П.А. (ООО «РН-Сервис») Гилаев Г.Г. (ОАО «НК-Роснефть») Кулясов С.С. (ООО «РН-Краснодарнефтегаз») Вартумян Г.Т., Кошелев А.Т. (ГОУ ВПО «КубГТУ»)	85
Опыт, развитие и перспективы инженерно-технологического сопровождения процесса бурения наклонно-направленных скважин Аблеев М.Г., Галеев С.С., Григорьев В.М., Камоцкий В.А., Меньщиков И.В. (ООО НПФ «Горизонт») Филимонов О.В. (ОАО НПП «ВНИИГИС»)	89

Технология геофизических исследований горизонтальных скважин и боковых стволов	
с применением аппаратурно-методических комплексов АМК «ГОРИЗОНТ»	95
Леготин Л.Г., Султанов А.М., Брякин И.Н., Кузьмин И.В., Рафиков В.Г. (ООО НПФ «АМК))
ГОРИЗОНТ»)	
«Высокие технологии» в создании системы глубинной видеосъемки «АРГО» для КРС	
и бурения	101
Скворцов В.Ю. (ООО «Технологии Исследований Скважин»)	101
Латышев А.А. (Филиал ООО «Газпром ВНИИГАЗ», г. Ухта)	
Проблемы повышения добычи нефти в условиях месторождений России	
Антониади Д.Г., Кошелев А.Т. (ГОУ ВПО «КубГТУ»)	104
Исламов Р.Ф. (ООО «РН-Краснодарнефтегаз»)	104
Пустовой П.А. (ООО «РН-Сервис»)	
Анализ применения технологий защиты скважин при пескопроявлении в ООО «РН-	
Пурнефтегаз»	109
Михайлов А.Г., Волгин В.А., Ягудин Р.А., Шакиров Э.И. (ООО «РН-Пурнефтегаз»)	
Установка гравийно-щелевых фильтров в скважинах	110
Исмаилов Ф.С. (НИПИ «Нефтегаз», SOCAR)	118
Опыт применения скважинного инструмента производства ООО «НПП «РосТЭКТех-	
нологии» при работе с колтюбинговыми установками	122
Штахов Е.Н. (ООО «НПП «РосТЭКтехнологии»)	
Российский комплекс бустерного колтюбинга ООО «РудГорМаш-Нефть-Газ-Сервис»	
Гриценко Е.М., Балашов В.А. (ООО «РудГорМаш-Нефть-Газ-Сервис»)	126
Применение азотных компрессорных станций Промышленной группы «Тегас» в	
современных технологиях капитального ремонта скважин и повышения нефтеотдачи	101
пластов	131
Владыкин Д.В. (Промышленная группа «Тегас»)	
Технология выравнивания профиля приемистости закачкой сшитых полимерных	
систем как эффективный метод повышения добычи нефти	134
Жарков А.В. (ООО «Делика» ГК «Миррико»)	
Мониторинг технического состояния скважин с использованием автономной	
аппаратуры	4.00
Пятницкий Д.Ю. (ООО «Специальные геофизические системы»)	139
Заварин С.А. (ООО «Компания Полярное Сияние»)	
Методы борьбы с АСПО на месторождениях ООО «РН-Краснодарнефтегаз» на	
примере Успенского и Горячеключевского участков	147
Шостак Н.А., Кусов Г.В., Савенок О.В. (ГОУ ВПО «КубГТУ»)	1.,
Расчет цилиндрических резервуаров, находящихся под действием поверхностной	
нагрузки с учетом нелинейности материала, применяемых в нефтегазовой промыш-	
ленности	151
Гасанов Ф.К. (НИПИ «Нефтегаз» SOCAR)	
О межколонных давлениях в нефтяных и газовых скважинах	
Коновалов А.Е., Вартумян Г.Т., Геворков А.А. (ГОУ ВПО «КубГТУ»)	154
Пустовой П.А. (ООО «РН-Сервис»)	157
I CHIEHKA BUSMUMHUGIN UCBUEHNO N DEMUHTA MANINDAUNALIA GGDAMAA	
Оценка возможности освоения и ремонта многозабойных скважин Чижов И.В., Кустышев А.В. (ООО «ТюменНИИгипрогаз»)	159

Список компаний-участников

- 1. ЧУ ВПО "Акалемия ИМСИТ"
- 2. OAO "AK "O3HA"
- 3. РУП ПО "Белоруснефть"
- 4. ООО "Бурнефтегаз"
- 5. ООО "ВНИИБТ буровой инструмент"
- 6. ОАО "ВОЛГАБУРМАШ"
- 7. ООО "ГАЗФЛОТ"
- 8. ООО "Делика"
- 9. Журнал "Oil&Gas Eurasia"
- 10. ОАО "Завод геологического оборудования и машин "Гром"
- 11. ООО "Заполярстройресурс"
- 12. ООО "Зиракс"
- 13. ОАО "Краснодарский завод "НЕФТЕМАШ"
- 14. ГОУ ВПО "Кубанский государственный технологический университет"
- 15. ООО "ЛУКОЙЛ-Информ"
- 16. ОАО "МАШПРОМ"
- 17. ООО "Мегион-Сервис"
- 18. ООО "Миррико менеджмент"
- 19. ГОУ ВПО "Национальный исследовательский Томский политехнический университет"
- 20. ООО "НВП "Модем"
- 21. ЗАО "Недра-Консалт"
- 22. ООО "Нефтегазовая вертикаль"
- 23. НИПИ "Нефтегаз" SOCAR
- **24. ОАО** "НК "ЛУКОЙЛ"
- 25. ЗАО "НК "Нобель Ойл"
- 26. ОАО "НК "Роснефть"
- 27. ООО "НК "Роснефть-НТЦ"
- 28. ООО "НПК "ЭКСБУР-К"
- 29. ОАО "НПО "Бурение"
- 30. ООО "НПО "Химбурнефть"
- 31. ООО "НПП "РосТЭКтехнологии"
- 32. ЗАО "НПП "СибБурМаш"
- 33. ООО "НПФ АМК "ГОРИЗОНТ"
- 34. ООО "НПФ "Горизонт"
- 35. ООО "НПФ "Нитпо"
- 36. ООО "НПФ "Пакер"
- 37. ООО "ОЙЛ-СНАБ"
- 38. ЗАО "ОКБ "Зенит"

- 39. ООО "Пента Силикон"
- 40. ООО "Пресижн Энерджи Сервисез СиАйЭс"
- 41. ЗАО "ПромТехИнвест"
- 42. ООО "Промы шленная химия"
- 43. ООО "Региональная нефтесервисная компания"
- 44. ООО "РИК-Сервис"
- 45. ООО "РН Пурнефтегаз"
- 46. ООО "РудГорМаш-Нефть-Газ-Сервис"
- 47. ООО "Русская электротехническая компания"
- 48. ООО "Сервис Буровых Растворов"
- 49. ООО "Сервисная Компания Навигатор"
- 50. ЗАО "Сиб Трейд Сервис"
- 51. ООО "Смит Продакшн Технолоджи"
- 52. ООО "Специальные геофизические системы"
- 53. ОАО "Татнефть им. В.Д. Шашина"
- 54. ОАО "Татнефть", НГДУ "Джалильнефть"
- 55. ОАО "Татнефть", НГДУ "Лениногорскнефть"
- 56. ООО "Татнефть-РемСервис"
- 57. ООО "ТД "Элкам нефтемаш"
- 58. ООО "Тегас"
- 59. ООО "Технологии Исследований Скважин"
- 60. ООО "ТКО Сервис"
- 61. ООО "ТМК-Премиум Сервис"
- 62. ООО "ТНГ-Групп"
- 63. ОАО "ТомскНИПИнефть"
- 64. ООО "Торговая компания "Измерон"
- 65. ЗАО "Тюмгазкамко лимитед"
- 66. ООО "Тюменский нефтяной научный центр"
- 67. ООО "ТюменНИИгипрогаз"
- 68. ЗАО "УГМК-Рудгормаш"
- 69. АО "Уралнефтепрогресс"
- 70. ООО "Урал Дизайн ПНП"
- 71. ЗАО "Уралнефтепрогресс"
- 72. Varel International

РОССИЙСКИЕ СИСТЕМЫ ВЕРХНЕГО ПРИВОДА

Фишков Л.А. (ЗАО «ПромТехИнвест»)

Сегодня более половины мирового прироста добычи углеводородов обеспечивается горизонтальными и наклонно-направленными скважинами. Бурение таких скважин требует применения систем верхнего привода (СВП).

ЗАО «ПромТехИнвест» основано в 1995 году. Основным направлением его деятельности является инжиниринг нефтепромыслового оборудования, разработка и внедрение передовых технологий бурения, реализация проектов по импортозамещению.

С 2003 года ЗАО «ПромТехИнвест» совместно с ОАО «Электромеханика» приступило к серийному производству систем верхнего привода ПВГ-1600. В данный момент мы являемся единственными в России разра-

ботчиками и производителями верхних силовых приводов. Данное оборудование обеспечивает выполнение наиболее сложных технологических процессов во время буровых и ремонтных работ на нефтяных и газовых скважинах, включая зарезку боковых стволов, а также многоствольное бурение.

Компания ЗАО «ПромТехИнвест» позиционирует себя в сегменте сбалансированного соотношения цены, качества и предлагаемого пакета услуг, поставляя на рынок высокотехнологическое оборудование – системы верхнего привода.

В настоящее время установки нашего производства успешно эксплуатируются в нефтяных компаниях Российской Федерации. Плодами наших усилий стало самостоятельно разработанное и внедренное в буровую практику семейство отечественных верхних силовых приводов грузоподъемностью от 80 до 250 тонн.

Продукция компании «Пром Tex Инвест»

- -Привод верхний электрогидравлический (ПВЭГ-225.02) грузоподъемностью 250 тонн;
- -Привод верхний гидравлический (ПВГ-2000) грузоподъемностью 160 тонн;
- -Вертлюг гидравлический силовой (ВГС-80) грузоподъемностью 80 тонн;

Системы верхнего привода ЗАО «ПромТехИнвест» имеют Разрешение на применение Федеральной службы по экологическому, технологическому и атомному надзору, Сертификаты соответствия требованиям нормативных документов $P\Phi$.

Принципиальные элементы конструкции СВП запатентованы Федеральной службой по интеллектуальной собственности, патентам и товарным знакам.

Оригинальное программное обеспечение системы управления СВП является интеллектуальной собственностью компании, зарегистрировано в реестре компьютерных программ $P\Phi$ и инсталлируется на все изделия семейства СВП.

Привод верхний гидравлический ПВГ-1600

Как уже было сказано выше история создания систем верхнего привода компании «ПромТехИнвест» началась в 2003 году. Тогда инженеры и конструкторы нашей компании в рамках программы импортозамещения по заказу ОАО «Сургугнефетегаз» разработали первый отечественный верхний силовой привод ПВГ-1600 грузоподъемностью 120 тонн (рис. 1).

ПВГ-1600 состоит из верхнего силового привода ВСП-1600, наземного гидроагрегата НГА-1600, системы электрогидроуправления ЭГУ-1600, комплекта гидравлических рукавов и трубопроводов.

Максимальный кругящий момент этого гидрообъемного, безступенчатого, реверсивного силового привода - 1600 кгс*м, максимальная частота вращения выходного вала – 110 оборотов в минуту, выходная мощность – 160 кВт. Масса подвесной части (без направляющей балки) составляет 2500 кг.

Одним из наиболее крупных заказчиков отечественных систем верхнего привода является ОАО «Сургутнефтегаз», которое изначально использовало верхние приводы американского про-

Рис. 1 - ПВГ-1600

изводства, но в процессе его эксплуатации столкнулось с рядом проблем и, в конечном итоге, приняло решение использовать отечественные СВП. В настоящее время более 80 установок ПВГ-1600 успешно эксплуатируются в нефтяных компаниях Российской Федерации, позволяя уйти от роторного бурения и тем самым повысить производительность и эффективность работ, облегчить труд людей.

Изделия в полном объеме заменяют в эксплуатации буровые установки с верхним приводом зарубежных фирм, не уступают им по технико-эксплуатационным показателям, а по ряду функциональных возможностей (по техническому ресурсу, времени обслуживания, стоимости ремонта) превосходят аналогичные зарубежные системы.

ЗАО «Промтехинвест» продолжает совершенствовать конструкцию изделия, работая над повышением качества и расширением сферы применения СВП для всего модельного ряда подъемных агрегатов. На смену ПВГ-1600 в данный момент запущен в производство более производительный и надежный привод ПВГ-2000 в безредукторном исполнении с грузоподъемностью 136 и 160 тонн.

Привод верхний гидравлический ПВГ-2000 (рис. 2)

Гидромотор и тормоз СВП-2000 установлены на одном валу в корпусе вертлюга, обеспечивая без редуцирования необходимые кругящий и тор-

мозной моменты.

В варианте СВП-2000 применен радиальногидромотор с рабочим поршневой объемом 5200/2600 см³ для обеспечения двух диапазонов с максимальными частотами вращения 90 и 60 об/мин. Подача насоса не менее 320 л/мин.

СВП-2000 имеет различные модификации:

- 1) Гидроагрегат по желанию заказчика может комплектоваться двумя видами привода основного насоса дизель агрегатом или электродвигателем.
- 2) Применяются два вида направляющей крепления к буровым установкам для гашения реактивного момента: направляющая, аналогичная, как и на приводе ПВГ-1600 с роликовым механизмом, так и ползун. Они различаются в возможности реализуемого рабочего момента с обычной направляющей 1600 кгс*м. и в комплектации с ползуном момент 2000 кгс*м.

Так же по желанию заказчика СВП-2000 могут комплектоваться гидромеханической лапой захвата, которая позволяет без демонтажа привода осуществлять замену шарового крана и переводника.

Рис. 2 - ПВГ-2000

Вертлюг ВГС-80

Успешное освоение нефтяными компаниями систем верхнего привода позволило расширить применение данной технологии, в том числе, для капитального ремонта скважин и «зарезки» боковых окон.

С этой целью компанией «ПромТехИнвест» был разработан силовой вертлюг ВГС-80 (рис. 3) грузоподъемностью 80 тонн с кругящим моментом 1100 кгс*м. Силовой вертлюг обеспечивает высокую эффективность и безопасность работ и предназначен для оснащения отечественных и зарубежных подъемных агрегатов типа АП-80, A60/80 и других.

ВГС-80 включает в себя силовой вертлюг с компактным гидромотором и безредукторным приводом вала, наземный гидроагрегат с дизельным приводом основного гидронасоса, электрический и гидравлический контуры обслуживания, пульт управления

Принципиальным отличием BГС-80 от зарубежных аналогов является использование схемы крепления вертлюга к мачте подъемного агрегата. По сравнению с рычажно-тросовой схемой крепления, снижающей полезную грузоподъемность подъемного агрегата, при установке BГС-80

Рис. 3 - ВГС-80

на мачте используется направляющая балка складного типа и ползун. В этом случае грузоподъемность агрегата сохраняется неизменной, а эффективность работы и безопасность обслуживающего персонала существенно увеличивается.

Силовой вертлюг обеспечивает:

- регулируемое вращение бурильной колонны в двух направлениях, торможение и остановку вращения бурильной колонны, ее удержание в заданном положении (обеспечивается гидроприводом);
- возможность работы с левосторонним инструментом:
 - подачу бурового раствора через ствол вертлюга;
 - свинчивание-развинчивание бурильных труб;
- герметизацию внугритрубного пространства бурильной колонны при газо-, нефте-, водопроявлениях ручным шаровым краном;
- удержание веса бурильной колонны при ее вращении и остановке;
- задание требуемых величин крутящего момента, частоты, направления вращения бурильной колонны и контроль заданных параметров;
 - дистанционное управления приводом вертлюга;
- работу с погружным инструментом с условным диаметром не более 40 мм.

Привод верхний электрогидравлический ПВЭГ-225

Разработка трудноизвлекаемых запасов нефти вызывает необходимость закладывать в схемы строительства скважин все более сложные методы эксплуатационного бурения. Это обусловило необходимость разработки компанией «ПромТехИнвест» нового верхнего силового привода грузоподъемностью 250 тонн.

ПВЭГ-225 (рис. 4) предназначен для оснащения отечественных и зарубежных стационарных буровых установок типа БУ 3000-ЭУК, БУ 3900/225 ЭК-БМ, БУ 2900/200 ЭПК-БМ и других с целью эксплуатационного бурения вертикальных, наклонно-направленных и горизонтальных скважин.

Как указывалось ранее, основной особенностью СВП производства компании «ПромТехИнвест» является применение безредукторного привода на основе использования высокомоментного гидромотора и тормоза в проходных исполнениях.

ПВЭГ-225 проявил целый ряд эксплуатационных преимуществ перед зарубежными аналогами.

Рис. 4 - ПВЭГ-225

Во-первых, это минимальная масса и габариты подвесной части. Этот фактор позволяет устанавливать наши приводы без реконструкции существующих буровых установок.

Во-вторых, это полное соответствие параметров питания привода отечественной системе электроснабжения.

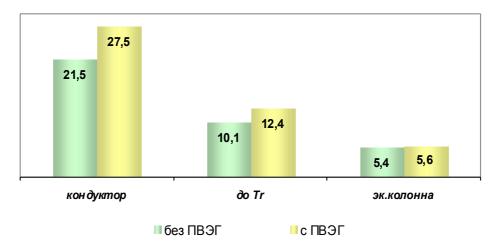
В-третьих, унификация с буровым инструментом, технологией технического обслуживания и ремонта, включая оперативное снабжение запасными частями.

Кроме того, конструкция привода обеспечивает самоторможение вала гидроприводом и плавное снятие пружины при возникновении торсионного эффекта бурильной колонны.

Привязка изделий.

ЗАО «ПромТехИнвест» успешно работает по расширению применения собственных систем верхнего привода для отечественных и зарубежных буровых установок, проводя работы по «привязкам» СВП к буровым установкам различного типа. Достижениями компании являются разработка и согласование схем привязки:

- СВП ПВЭГ-225 для БУ 3000-ЭУК, БУ 3900/225 ЭК-БМ, БУ 2900/200 ЭПК-БМ;
- СВП ПВГ-1600, 2000 к мобильным буровым установкам Cardwell-210, МБУ-125;
- силовых вертлюгов ВГС-80 к подъемным агрегатам АП-80, А60/80, УПА-60А, УПА-60/80А, Стетко.


Мы стремимся к тому, чтобы у заказчика было максимальное удобство использования продукции компании «ПромТехИнвест», ведутся конструкторские работы с ведущими отечественными производителями буровых установок (Кунгур, ВЗБТ) о привязке наших СВП к новым установкам.

Эффективность ПВЭГ-225

В ходе эксплуатации системы верхнего привода ПВЭГ-225 подтвердились явные преимущества строительства скважин с применением СВП:

- -сокращение объема и времени технологических операций;
- -повышение безопасности буровых работ;
- технологичность проработок участков ствола скважины, сложенного большими толщами неустойчивых пород;
- -увеличение эффективности наклонно-направленного бурения скважин со сложными профилями;
 - -сокращение сроков строительства скважин.

В качестве примера, на **рис. 5** отображена динамика изменения средней рейсовой скорости бурения на кусте 162 Рогожниковского месторождения (ОАО «СНГ»), до и после применения СВП ПВЭГ-225:

Рис. 5 - Динамика изменения рейсовой скорости бурения (м/ч) до и после применения ПВЭГ-225

Применение верхнего силового привода позволило увеличить рейсовую скорость бурения:

- при бурении кондукторов в среднем на 28% (с 21.5 до 27.5 м/час);
- при бурении после кондуктора до пласта Триасс (»2500м) в среднем на 23% (с 10.1 до 12.4 м/час)
- при бурении скважин от пласта Триасс до проектного забоя увеличение средней рейсовой скорости на 3.7% (с 5.4 до 5.6 м/час).

Анализ динамики рейсовой скорости в разрезе видов работ (**рис. 6**) показал, что применение верхнего силового привода позволило увеличить рейсовую скорость бурения Трейса в среднем на 6% за счет снижения времени затраченного на:

- наращивание (Тнар) в среднем на 40%;
- ремонт (Т рем) в среднем на 20%;
- спуско-подъемные операции (Тспо) в среднем на 10%;
- подготовительно заключительные работы (Тпзр) в среднем на 28%.

		¥Q!	ндуктор	до Тr +/- (%)		эк.колонна +/- (%)		итого			
		*/- (%)						+/- (%)		5es 8/⊓	сВ/П
X XX	Т долбл		22%	¥	-2%		26%	37,1	40,9	.	10%
wodu :	Т нар	•	-37%	•	-43%	•	-44%	16,2	9,7	•	-40%
Баланс времени, ч / на 1000м проходки	Т пром	A	16%	<u> </u>	8%	A	40%	18,5	21,4	A	16%
	Т рем	•	-27%	•	26%	•	-25%	5,4	4,3	•	-20%
, E	Т спо	•	-13%	•	-21%	*	11%	23,2	20,8	•	-10%
	Т ПЗР	•	-25%	•	-55%	•	138%	12,6	9,0	•	-28%
5 373	Т рейса	•	-9%	•	-14%	<u>*</u>	21%	113,0	106,2	•	-6%

Рис. 6 - Динамика изменения средней рейсовой скорости бурения в разрезе видов работ

Средняя продолжительность строительства скважин (без учета времени на спуск кондуктора, эксплуатационной колонны и окончательного каротажа) с применением СВП снизилась на 46 часов.

Сервисный центр

Для организации сервисных услуг компания ЗАО «ПромТехИнвест» выбрала комплексный путь развития технического обслуживания систем верхнего привода собственного производства — это внугренний сервис компании в г. Сургут и привлечение сервисных служб компаний-заказчиков оборудования (наиболее яркий пример сотрудничества в сфере обслуживания СВП — ОАО «Сургутнефтегаз»).

Компания «ПромТехИнвест» оказывает техническое содействие в оснащении эксплуатирующих организаций соответствующими стендами для технического обслуживания, ремонта и поддержания работоспособности приводов, проводит пуско-наладочные и шеф монтажные работы, ежегодно десятки сотрудников нефтяных компаний проходят в сервисном центре в г. Сургут и на производстве в Санкт-Петербурге обучение правилам эксплуатации и обслуживания систем верхнего привода. Согласованные программы обучения включают в себя разделы по механике, гидравлике, электрооборудованию и программному обеспечению СВП. По итогам занятий, всем

прошедшим курс обучения, выдаются свидетельства установленного образца о повышении квалификации.

Важным аспектом также являются инновации в технологических процессах изготовления. Предприятием были вложены значительные средства в оснащение производства современным станочным оборудованием и сборочно-испытательными стендами. Вся изготовленная продукция компании «Пром Тех Инвест» подвергается стендовым испытаниям, во время которых проверяется надежность и исправность изделий. Заказчик перед покупкой изделий может лично приехать на завод и своими глазами увидеть ее испытания, убедиться в качестве приобретаемого товара.

Технология верхнего привода изменила жизнь буровых бригад, во многом облегчая ее работу, и в последнее время, ее использование становится наиболее эффективным способом бурения нефтяных и газовых скважин.

В период с 2002 по 2010 год нами произведено около 180 единиц систем верхнего привода (рис. 7).

100 80 60 40 20 0 DB3F-225 DBF-1600 DBF-2000 BFC-80

Выпущенные изделия с 2002-2010 г по моделям

Рис. 7 - Системы верхнего привода, выпущенные компанией «Пром Тех Инвест» в период 2002 - 2010 гг.

Крупнейшими Заказчиками продукции компании «ПромТехИнвест» являются: ОАО «Сургутнефтегаз», ОАО «НК «Роснефть», ООО «БК «Евразия» и другие (Катобьнефть, Мегион, Буровая компания ГРАНД, СКРС, Обънефтеремонт).

Компания «ПромТехИнвест» инвестирует большой объем средств в разработку и внедрение новых систем верхнего привода. В данный момент наша компания ведет разработку следующих систем верхнего привода.

В середине октября текущего года в г. Нижневартовск начнутся промысловые испытания силового вертлюга ВГС-100 грузоподъемностью 100 тонн и моментом 1000 кгс*м с использованием тросовой передачи кругящего момента на мачту мобильной буровой установки. Данный вид монтажа должен будет обеспечивать универсальность применения нашего оборудования на буровых установках и сократить время его мобилизации и демобилизации, что является важным фактором для подрядных организаций, работающих на рынке КРС.

Подвесная часть ВГС-100 сконструирована так, что позволяет ему крепиться непосредственно в элеватор мобильной буровой установки, что дает возможность максимально использовать высоту мачты в работе. Дизельгидроагрегат идущий в комплекте с ВГС-100 аналогичен применяемому и подтвердившему свою надежность агрегату, который идет с ВГС-80.

Идя на встречу пожеланиям заказчиков и для достижения более высоких характеристик уже хорошо зарекомендовавшего себя в работе ПВЭГ-225.02 на его базе до конца этого года будет выпущена более мощная модификация – ПВЭГ-270.

Сохранив основные достоинства и масса-габаритные параметры ПВЭГ-225.02, ПВЭГ-270 будет обладать улучшенными характеристиками, такими как грузоподъемность и кругящий момент.

За счет применения двухскоростного гидромотора с увеличенным рабочим объёмом мы сможем увеличить максимальный кругящий момент (при докреплении частота вращения вала 5-10 об/мин) и максимальное количество оборотов до 6000 кгс*м и 110 об/мин. соответственно.

Благодаря усилению несущих элементов будет достигн уга грузоподъемность в 270 тс.

При применении двухстороннего гидромотора будут получены следующие режимы бурения:

- на скорости до 45 об/мин с рабочим моментом 4500 кгс*м,
- на скорости до 60 об/мин с рабочим моментом не менее 3500 кгс*м,
- на скорости до 110 об/мин с рабочим моментом не менее 1600 кгс*м,

В ПВЭГ-270 будет внедрен режим аварийной работы, он заключатся в том, что при потере основного внешнего питания оборудование будет иметь возможность осуществлять вращение бурильной колонны и совершать операцию докрепление/раскрепление.

В этом же году компания «ПромТехИнвест» приступила к разработке системы верхнего привода грузоподъемностью 320-350 тонн.

Согласно п. 2.5.8. «Правил безопасности в нефтяной и газовой промышленности ПБ 08-624-03» буровые установки должны оснащаться верхним приводом при:

- бурении скважин с глубины более 4500 м;
- наборе угла с ради усом кривизны менее 30 м в наклонно-направленных скважинах;
- бурении горизонтального участка ствола скважины длиной более 300 м в скважинах глубиной по вертикали более 3000 м.

Что говорит об обязательном применении привода данной грузоподъемности. В данный момент в России не производится систем верхнего привода такой грузоподъемности. В стране, которая является одной из крупнейшей по добыче углеводородов, нет своей производственной базы, т.е. в начале мы сами для себя устанавливаем правила, а потом думаем, как их выполнять. Хочется верить, что будут происходить изменения, которые позволят Российским машиностроителям занять достойное место на мировом рынке.

ООО "Научно-производственная фирма "Нитпо" является разработчиком и эксклюзивным поставщиком кремнийорганических тампонажных материалов АКОР-БН®

ООО "НПФ "Нитпо" работает на нефтегазовом рынке России и СНГ с 1991 года и успело зарекомендовать себя как динамично развивающееся предприятие с сильной научной базой, надежный поставщик оборудования, реагентов и инжиниринговых услуг для предприятий нефтегазовой отрасли.

Эксклюзивный продукт — кремнийорганические тампонажные материалы группы АКОР-БН® — являются собственной разработкой ООО "НПФ "Нитпо". Кремнийорганические тампонажные материалы АКОР-БН® выпускаются с 2000 года вместо материалов предыдущего поколения АКОР-Б. Основные преимущества АКОР-БН® перед АКОР-Б100:

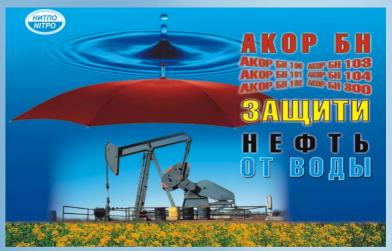
- лучшая совместимость с водой, водными растворами солей и полимеров;
- > отсутствие образования осадка при смешении с водой;
- > значительно возросшая селективность;
- улучшенные фильтрационные и прочностные характеристики.

Кремнийорганические тампонажные материалы АКОР-БН® — жидкости от желто-коричневого до темно-коричневого цвета с температурой замерзания ниже минус 50 0 С, динамической вязкостью 1-30 мПа \cdot с и плотностью 980-1100 кг/м 3 при 20 0 С. В присутствии воды они гидролизуется с образованием жидких водорастворимых продуктов, которые затем отверждаются (гелируют).

Материалы АКОР-БН® — базовые реагенты. В зависимости от поставленной цели и выбранной технологической схемы проведения работ их можно использовать в товарном виде или на их основе готовить различные изоляционные составы и композиции. Наиболее широко применяемым является водонаполненный состав в соотношении АКОР-БН®-вода = 1-3. Водонаполненная

композиция не утрачивает способность к отверждению, не теряет эксплуатационные свойства и в дальнейшем под воздействием температуры и других факторов образует прочный гель в полном объеме, который не растворяется водой. Расход товарного материала АКОР-БН® на одну скважино-операцию обычно составляет от 1,5 до 4,5 тонн и зависит от вида проводимых работ, объекта воздействия и выбранной технологической схемы.

Материалы AKOP-БН $^{\circ}$ применимы в терригенных и карбонатных коллекторах с пластовой температурой до 300 $^{\circ}$ C, способны отверждаться под воздействием воды любого типа и любой минерализации и предназначены для проведения ремонтно-изоляционных работ в нефтяных, газовых и ПГХ скважинах:


- ликвидация заколонных перетоков;
- ликвидация пропласткового обводнения;
- ликвидация притока подошвенных вод;
- отключение отдельных обводнившихся интервалов пласта;
- ликвидация негерметичности эксплуатационной колонны;
- выравнивание профиля приемистости нагнетательных скважин.

Наибольшее применение получил материал АКОР-БН®102. В период с 2000 по 2008 год с использованием

материалов АКОР-БН® проведено более 1000 скважино-операций.

Выбирая материалы АКОР-БН®, клиенты "Нитпо" получают только высокоэффективные реагенты, HO дополнительные важные преимущества доступность информации об применения тампонажных материалов и рекомендаций по технологическим схемам проведения ремонтно-изоляционных работ на скважинах, а также готовность специалистов оказать помощь планировании операции - от консультации по e-mail и телефону до выезда на скважину.

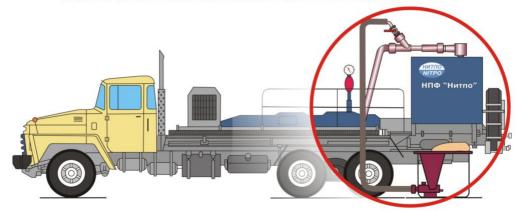
АКОР-БН® − НАДЕЖНАЯ ЗАЩИТА НЕФТИ, ГАЗА И ГАЗОВОГО КОНДЕНСАТА ОТ ВОД

Тел./факс: (861) 216-83-63, 216-83-64, 216-83-65, 210-04-12

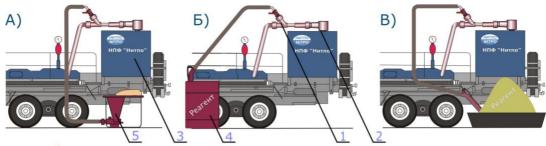
e-mail: nitpo@nitpo.ru; web-site:www.nitpo.ru

ООО "Научно-производственная фирма "Нитпо"

WWW.NITPO.RU


ДИСПЕРГАЦИОННО-ДОЗИРОВОЧНЫЙ СМЕСИТЕЛЬ ДДС-2М

Комплект смесительно-диспергационно-дозировочного оборудования (ДДС-2М) предназначен для одновременного гидровакуумного дозированного ввода, смешивания и диспергирования порошкообразных и жидких компонентов в процессе приготовления специальных растворов и технологических жидкостей различного назначения.


Основные параметры технической характеристики ДДС-2М

4	Рабочее давление на входе в эжекционно-вакуумный смеситель, МПа:	без применения диспергатора высокого давления	0,6-4,0			
- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	таоочее давление на входе в эжекционно-вакуумный смеситель, инта.	с применением диспергатора высокого давления	10-12			
2	2 Пропускная способность по рабочей жидкости, м³/ч, не менее					
3	В Величина создаваемого вакуума, кгс ⁻¹ , не менее					
4	4 Регулируемая скорость засасывания различных порошкообразных материалов через переноснуюворонку, кг/мин					
5	Регулируемая скорость всасывания жидких компонентов (процентное отношение засасываемого компонента по отношению к рабочей жидкости за один рабочий цикл), %					

Вариант монтажа ДДС-2М на цементировочном агрегате ЦА-320

Варианты применения дополнительного оборудования

На рисунке обозначены:

- A забор порошкообразных материалов с применением воронки;
- Б забор жидких материалов при приготовлении эмульсии;
- В забор порошкообразных материалов с применением насадка для отбора из мешков и контейнеров.
- 1 смеситель эжекционный;
- 2 диспергатор;
- 3 мерная емкость;
- 4 бочка или другая емкость;
- 5 воронка для сыпучих реагентов.

Тел./факс: (861) 210-04-12, 216-83-63

216-83-64, 216-83-65

E-mail: nitpo@nitpo.ru; nitpo@mail.ru

СТРОИТЕЛЬСТВО И РЕМОНТ СКВАЖИН 2010

(Сборник докладов Международной научно-практической конференции г. Геленджик, Краснодарский край 27 сентября - 2 октября 2010 г.)

Компьютерная верстка и дизайн: Молчанов В.Н., Полковникова Ю.И.

Перевод: Галочкина Е.Л.

Сдано в набор 19.11.2010 г. Подписано в печать 06.12.2010 г. Формат бумаги 210×297. Бумага листовая для офисной техники. Гарнитура «Times New Roman». Печать лазерная полноцветная. Тираж 500 экз.

ООО «Научно-производственная фирма «Нитпо» 350049, Краснодар, ул. Котовского, д. 42, 4 этаж, офис 12 Тел/факс: (861) 216-83-63; 216-83-64; 216-83-65; 210-04-12 e-mail: nitpo@mail.ru, nitpo@nitpo.ru www.nitpo.ru

- научно-исследовательские работы в области ПНП и КРС;
- ремонтно-изоляционные работы в скважинах инжиниринг;
- поставка химреагентов, материалов и оборудования для строительства и ремонта скважин;
- организация и проведение нефтегазовых конференций

000 "НПФ "Нитпо"

350049, г. Краснодар, ул. Котовского, 42, 4эт, офис 12 www.nitpo.ru, oilgasconference.ru

nitpo@nitpo.ru; nitpo@mail.ru

Тел/факс: (861) 216-83-63; 216-83-64; 216-83-65; 210-04-12

